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Abstract
Semi-transparent visualizations are commonly used to reveal in-

formation in overlapped regions by applying colors and opacity.

While a few studies made recommendations on how to choose

colors and opacity levels to maintain depth perception, they often

conflict and overlook the interaction effect between these factors.

In this paper, we systematically explore the impact of color and

opacity on depth order perception across eight colors, three opacity

levels, and various layer orders and arrangements. Our inferential

analysis shows that both color hue and opacity significantly influ-

ence depth order perception, with the effectiveness depending on

their interaction. We also derived 12 features for predictive analysis,

achieving the best mean accuracy of 80.72% and mean F1 score of

87.75%, with opacity assigned to the front layer as the top feature

for most models. Finally, we provide a small design tool and four

guidelines to better align the design rules of colors and opacity in

semi-transparent visualizations.

CCS Concepts
• Human-centered computing → Visualization design and
evaluation methods.

Keywords
Color Design, Opacity, Depth Order Perception, Semi-Transparent

Visualization

1 Introduction
Semi-transparent visualizations often employ color and opacity to

represent data with self or mutual occlusion. Their applications

include volume renderings [6, 9, 17, 35, 61], scatter plots [36, 39],

and parallel coordinates [26, 54] (Fig. 1a). In these visualizations,

colors often represent categories or structures, while opacity can

encode important temporal information or serve as a redundant vi-

sual cue [26]. Appropriately chosen color and opacity can enhance

a viewer’s ability to understand and analyze data by facilitating

depth order perception, helping users identify occluded layers and

differentiate between overlapping data items (e.g., samples at differ-

ent timestamps). In the example cited above, well-chosen color and

opacity enable viewers to explore different categories in parallel

coordinates without confusion.

However, choosing an appropriate combination of color and

opacity is no easy feat. Despite decades of visualization research on

color design, studies addressing opacity are surprisingly scarce [62].

This gap is particularly concerning, as humans inherently strug-

gle with depth perception—a challenge further complicated by the

complex interplay between multiple layers and varying opacity lev-

els [12, 55]. The limited research leads to contradictory guidelines.

For example, while a few studies suggest that increasing the opacity

of the front layer enhances depth order perception [1, 54], others

argue that opacity has little impact [28, 29].

A crucial oversight in these studies is the neglect of the interac-

tion effects
1
between color and opacity across different layers (see

∗
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1
Interaction effects and interactive effects are often used interchangeably; we choose

interaction effects, which is a statistical term that describes how a third variable

influences the relationship between an independent and dependent variable [25].
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(a) Semi-transparent visualization

After following our guidelines to adjust 
opacity, we can easily identify the depth 
order, which helps explore different 
categories without confusion, enhancing 
the analysis of intersecting data paths.

With semi-transparency, it is very
hard to know which category is in 
the foreground. 

(b) Example stimuli in our experiment

In this row, �������������������
��������of       the pink disk ������us 
identify that it is in the foreground.

From left to right, �����������
���������������� of       the pink disk 
��������our ability to identify that 
it is in the background.

Finally, whether increasing opacity 
helps us identify the front disk 
seems subject to specific colors, 
implying a potential ������������
between �������
� and �������.

Figure 1: Examples of semi-transparent visualizations. (a) We show examples of semi-transparent parallel coordinates, with
the top row displaying a visualization with inadequate semi-transparency, and the bottom row showing its counterparts with
appropriate semi-transparency. Additional examples are provided in Appx. A. (b) We show example stimuli in our experiment.
We varied color hues and opacity levels in two overlapping disks: one in the background (the back layer) and the other in
the foreground (the front layer). We also tested two arrangements: the front disk was positioned either on the left or on the
right. Participants were asked to select the disk that appeared to be in the front.

Fig. 1b). These interaction effects likely drive the inconsistencies

in the findings, leaving designers and practitioners without clear

guidelines.

In this paper, we comprehensively examine the effects of color,

opacity, and their interactions on depth order perception, unifying

them within a single experiment. While various color attributes

(e.g., hue, saturation, lightness) may influence this perception, we

focus on color hue—it is the most commonly considered factor in

conveying categorical differences and enhancing visual commu-

nication [23, 45, 56], and preliminary evidence suggests it has a

stronger influence than saturation and lightness [55].

Through inferential and predictive analyses of our data, we con-

tribute quantitative results on the effects of color and opacity

in visualization (Sec. 4), and predictive models for depth order

perception that could be integrated into design processes (Sec. 5).

Additionally, we conduct exploratory analyses of lightness and sat-

uration on depth perception to complement our findings (Sec. 6).

Based on these findings and models, we formulate a set of ac-
tionable design recommendations (Sec. 7.1) and provide a small

design tool to assist visualization designers and practitioners in

selecting colors and opacity (see supplementary materials).

Specifically,

In an online experiment with 192 participants, we tasked

participants with selecting the front disk in a pair of over-

lapping disks (see Fig. 1b) [55]. This experiment examines

1,008 unique combinations of colors, opacity levels, layer

orders, and arrangements. Our inferential analysis shows

that both color hue and opacity significantly influence

depth order perception in semi-transparent visualizations,

while the interaction effect between color hue and opacity

ismild. Moreover, increasing opacity in the front layer, or
decreasing opacity in the back layer enhances depth order

perception. Among the eight colors tested, •blue emerges

as the most effective color for the front layer, while •pink
and •yellow are the most effective colors for the back layer.

We also conducted predictive analyses on the experimental

data. We derived 12 features (e.g., hue distance) to predict

whether viewers can correctly identify the front disk, fol-

lowed by a sensitivity analysis. Across all our predictive

models, except for the SVM with a linear kernel, the top

feature for predicting depth order perception was consis-

tently opacity front—the opacity assigned to the front layer.

Our best-performing model, a random forest and four
features, achieved the best average accuracy of 80.72%
and average F1 score of 87.75%. These predictive models

provide a basis for our small tool, where designers can im-

prove a pair of colors and opacity to get an estimation of

viewers’ perception of different layers.

Finally, we offer four design guidelines on color hue and

opacity to help designers create effective semi-transparent

visualizations. These guidelines enhance visual clarity and

depth perception by emphasizing the selection of color hues

and the adjustment of opacity based on layer orders.

Our experiment represents the most comprehensive effort to

date in evaluating the impacts of color hue and opacity on depth
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order perception. While our study focuses on a pair of two over-

lapping disks, our results also provide insights into how overlaps

between adjacent layers might behave in more complex scenarios.

We anticipate that our results and methodologies will inspire future

work examining additional factors such as shape and size, as well as

more complex datasets, to fully explore the design space for semi-

transparent visualizations. To facilitate these efforts, we made our

design tool, data, code, and models available at https://osf.io/n3jg8/.

2 Related Work
Our work relates to semi-transparent visualizations for scientific

volume data and abstract information data. We also examine exist-

ing color design guidelines tailored to semi-transparent visualiza-

tions to help contextualize our work.

2.1 Depth Perception in Semi-Transparent
Volumes

Semi-transparent visualization techniques have been extensively

explored to visualize scientific volume. An important technique

in this area is direct volume rendering (DVR), which incorporates

depth signals, such as color, opacity, shading, and lighting, to en-

hance semi-transparent structures the (see [18, 27, 58] for surveys).

Several perceptual studies highlight the role of depth percep-

tion and identify key factors influencing depth perception in semi-

transparent volumes. For example, Adelson and Anandan [1] pro-

posed a depth layer representation based on luminance variations at
X-junctions, which can reveal areas prone to depth order ambiguity.

Kersten et al. [28] investigated the interaction between transparency
and motion, demonstrating that transparency can bias depth per-

ception derived from motion cues. Kersten et al. [29] explored the

impact of opacity and spatial frequency on stereoscopic rendering

in absorptive media. They found that opacity has minimal influence

on depth perception accuracy. Boucheny et al. [6] employed a three-

alternative forced-choice test to evaluate the effectiveness of DVR

in static and dynamic scenarios. They emphasized that transparency
can lead to depth order ambiguities. Englund and Ropinski [17]

designed experiments using ordinal and absolute depth judgments

to study the impact of six volume rendering techniques on depth

perception, shape perception, and visual appeal. Their findings sug-

gest that clear back-to-front relationships encoded through image
contrast enhance absolute depth perception.

Perceptual studies in this area also offer valuable insights into

how humans perceive depth order in semi-transparent visualiza-

tions. These insights inspire the development of computational

methods to improve depth perception in such data representations.

The core idea often involves adjusting transparency based on object

distance or leveraging data-driven algorithms. Chan et al. [10] in-

corporated psychological principles like visibility, shape, and trans-
parency to create quantitative metrics for the perceived quality of

layers. Based on these metrics, they developed automatic trans-

parency optimization algorithms that enhance the visualization of

layered structures in volume rendering. Zheng et al. [61] proposed

a quantitative perceptual model to improve depth order perception

using transparency and luminance. These studies suggest that cues

such as opacity and luminance play a significant role in depth or-

der perception within semi-transparent volume rendering, which

subsequently motivates our work.

2.2 Depth Perception in Semi-Transparent
Abstract Data

Semi-transparent visualization also plays a key role in information

visualization for showing overlapping categorical data [26, 40, 57].

This technique proves particularly useful when data points from

distinct categories either share identical values across multiple vari-

ables (common in parallel coordinates) or occupy the same spatial

location (e.g., scatter plots). For example, Wegman and Luo [57]

pioneered the use of opacity in parallel coordinates to visualize

overlapping lines, significantly improving the readability of large

datasets. Johansson et al. [26] built upon this concept, incorpo-

rating depth cues to encode temporal information within parallel

coordinates. Data in older time steps is drawn in the background

with reduced saturation and brightness using a single hue. May-

orga et al. [37] leveraged semi-transparency to encode multiple

attributes, such as group membership and density. They employed

lightness and chroma parameters to emphasize the density of over-

lapping sets.

Ensuring visually distinct layers is crucial in semi-transparent

visualizations for clear comprehension of overlapping categorical

data [40]. However, interpreting overlapping visual structures can

be challenging. To address this, researchers have conducted em-

pirical studies to understand how various factors associated with

semi-transparency influence the perception of depth order, with a

particular focus on color and opacity. For instance, Grieco and Ron-

cato [20] demonstrated that both opacity and the contour of data

shapes significantly impact viewers’ ability to discriminate between

depth orders. Hagh-Shenas et al. [21] identified that blending col-

ors with opponent hues can lead to difficulties in visual perception.

Bartram et al. [4] investigated the influence of color and opacity on

overlaid grids. Their findings emphasized the crucial role of color

in differentiating layered information. However, existing work also

revealed the complex interplay between color and opacity, high-

lighting the inherent difficulty in predicting their combined effect

on depth perception. Our study contributes to this ongoing chal-

lenge by unveiling the impact of color and opacity on depth order

perception and their interaction effects, with careful consideration

of both front and back layers.

2.3 Color Design for Semi-Transparent
Visualization

Numerous empirical studies and computational models exist to

guide effective color selection within visualizations [8, 33, 46, 51,

60, 62]. However, when applied to semi-transparent visualizations,

these established guidelines require significant adaptation due to

the interplay between color and opacity in conveying depth or-

der. Unlike opaque visualizations, semi-transparent ones introduce

additional layers that interact with colors. This necessitates a sys-

tematic investigation of how color and opacity interactively in-

fluence depth perception and, consequently, refined color design

guidelines tailored for semi-transparent visualization. As a pioneer

https://osf.io/n3jg8/
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Figure 2: Overview of our research. We begin with the generation of stimuli, followed by a pilot experiment and a main
experiment. We conducted Kruskal-Wallis H tests with Bonferroni correction and calculated bootstrapped confidence intervals.
Additionally, we constructed predictive models for depth order perception, which also shows how variations in color hue and
opacity between the front and back layers affect the perception.

work, Wang et al. [55] leveraged conjoint analysis with two over-

lapping disks to explore the contributions of a single parameter

value, including color, opacity, lightness, position, and color blend-

ing algorithms. They found that color and opacity in the front and

back layers are important to convey depth order. Similarly, previous

studies have produced a set of limited design considerations for

semi-transparent visualizations, which we categorized below:

Using colors to enhance depth perception. Often, it is rec-
ommended to use warmer colors (e.g., red or orange) in the fore-

ground and colder colors (e.g., blue or green) in the background,

which align with viewers’ perception of proximity [3, 52]. How-

ever, Wang et al. [55] suggested an contradictory approach to

using cold colors in the foreground, overlapped with warm

colors in the background. Additionally, increasing the light-

ness contrast between foreground and background layers can

further emphasize depth ordering [12, 17, 55, 56]. For example,

using lighter foreground objects against darker backgrounds

can increase the perceived depth.

Optimizing opacity for depth clarity. Generally, increasing
the opacity of foreground objects can enhance depth ordering

accuracy [1, 55]. However, excessively high opacity should

be avoided in contexts where transparency conveys critical

information or when subtle layering effects are needed [48]. In

particular, a few studies suggest that opacity has only a limited

influence on the accuracy of depth perception [28, 29].

Balancing color and opacity for effective depth percep-
tion. Previous research suggested combining highly saturated

colors with lower opacity to enhance visual prominence, as

the perception of opacity changes with variations in color sat-

uration and color contrast [10]. Also, placing cold colors in the

foreground and warm colors in the background can improve

depth perception even at low opacity levels [55].

These considerations reveal two primary limitations of extant

studies. First, they often overlook interaction effects. Most stud-

ies treat color and opacity as separate factors influencing depth

perception, whereas others [10, 55] provide limited evidence and

are insufficient for providing practicable guidelines to choose appro-

priate colors and opacity levels. Second, they produce conflicting
design recommendations. There is a lack of consensus among

studies on the appropriate use of color and opacity for depth per-

ception. Motivated by these needs, we followed a consistent and

systematic approach to color design in semi-transparent visualiza-

tions. We adopted the experimental framework by Wang et al. [55]

and examined the design space of color and opacity. Contrasting

with previous works, we had a focus on the interplay between

these factors and examined a broader range of color and opacity

conditions.

3 Study Design
To start, we defined our core research question: what are the im-
pacts of color, opacity, and their interaction on depth order
perception? This research question guided us throughout the pro-

cesses of study design and data analysis. Following this research

question, we selected eight representative colors based on their

hues and generated a set of stimuli to ensure comprehensive cover-

age. We first conducted a pilot study with 24 participants, which

helped us fine-tune our experimental design and determine the

appropriate sample size. Subsequently, we conducted our main

experiment with a total of 192 crowdsourced participants. Fig. 2

provides an overview of our research framework.

3.1 Stimuli
Paired comparison experiments are extensively used in the fields

of visualization [22, 38, 41] and color perception [3, 19, 55]. Any

complex comparisons or overlaps can be decomposed into pairs of

comparisons between two objects. We adopted this methodology,

presenting viewers with two objects. To examine the interaction

effect between color and opacity, similar to [55], we generated

two equally sized, semi-transparent disks with a 50% overlap in

diameter (also see Appx. B). We generated images for all possible
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permutations of color and opacity between the front and back layers,

using the classic 𝛼-blending algorithm [43] to calculate a smooth

color and opacity transition in the overlapped regions.

Opacity levels. When generating stimuli, we observed that if any

disk had opacity below 0.3, depth perception and overlapping iden-

tification was overly challenging. However, when a disk’s opacity

was above 0.7, distinguishing between the two layers became too

easy, but making it difficult to identify the overlapping area. As

such, we set opacity values at 𝛼 = {0.3, 0.5, 0.7} as low, medium,

and high opacity levels.

Color choices. Since color names reflect how people naturally

organize and identify colors [23, 56], we first selected frequently-

used color names following previous guidelines [5, 55, 56]. Their

studies unveil four primary colors (red, green, blue, yellow) and four

secondary colors (brown, orange, purple, pink) as most commonly

used color terms for categorical tasks, excluding black, white, and

gray. We then identified the most representative color values for

each specific color name. We used the dataset constructed by Heer

and Stone, measured the representativeness as negative entropy,

and selected the most representative color value with the minimum

negative entropy [23]. This process resulted in a set of eight colors:

•red, •orange, •brown, •yellow, •green, • blue, •purple,
and •pink.2
Color blending algorithm.We employed the classic 𝛼-blending

algorithm [43] to simulate the blending effect for the front and back

layers as weighted averages:

𝛼mix = 1 − (1 − 𝛼𝑡 ) (1 − 𝛼𝑏 )

𝐶mix =
𝐶𝑡𝛼𝑡 +𝐶𝑏𝛼𝑏 (1 − 𝛼𝑡 )

𝛼mix

The notations 𝐶mix and 𝛼mix represent the blended color and opac-

ity within the overlapped region, respectively. The subscripts 𝑡 and

𝑏 denote the front and back layers, with𝐶 representing color and 𝛼

representing opacity. By applying various color and opacity combi-

nations to the two disks and positioning them in the foreground or

background, we generated a dataset of 1,008 unique visual stimuli.
3

We show examples of our stimuli in Fig. 1b.

3.2 Pilot Study
Task. Building on the work of Wang et al. [55], our study presented

participants with two overlapping disks in each trial and asked

them to identify which disk appeared to be in the front. They
could choose “left”, “right” and “uncertain” (see Fig. 3). For each

participant, we recorded whether each trial was correctly answered

(1 for correct, 0 for incorrect) and the time taken to complete it.

2
The specific HSL (Hue, Saturation, and Lightness) values are •red {1,100,52},

•orange {31,100,51}, •brown {36,100,23}, •yellow {57,100,50},

•green {119,58,44}, •blue {219,100,50}, •purple {288,46,42}, and

•pink {332,100,83}, respectively.
3
We first select two colors from the eight colors, resulting in C

2

8
= 28 combinations,

and then assign an opacity value to each color of the two colors, and we have 3× 3 = 9

options. Finally, we determine the layer order and arrangement (2 × 2 = 4 options).

So ultimately we have 28 × 9 × 4 = 1, 008 combinations.

Please click and select the disk on the FRONT

Left RightUncertain

Figure 3: Task interface. Each image is 700 × 450 pixels.

Experimental design. Our pilot study tested all 1,008 combina-

tions. Given the large number, we adopted a between-subject design

to avoid fatigue effects. We randomly divided all the stimuli into

four groups, each comprising 252 pairs. This allocation ensures a

sufficient number of trials per participant while maintaining atten-

tion. Each participant finished one group randomly selected at the

time of the experiment.

Procedure. The experiment consisted of four phases. Participants

started with the standard 14 Ishihara plate test to check for color

blindness [24]. They then took a training phase involving three

trials. Following this, participants proceeded to the selection task,

which consisted of 252 trials. We randomized these stimuli to avoid

ordering effects. Finally, participants completed a demographic in-

formation questionnaire. The experiment sessions were conducted

in a consistently illuminated room, with participants seated in front

of a screen resolution of 2048×1080 pixels. On average, the experi-

ment took about half an hour to complete.

Participants.We employed a convenience sampling process and

recruited a total of 24 participants from our local university, includ-

ing 20 males and 4 females, all of whom were Computer Science

majors. All participants achieved an accuracy rate of over 90% in

the color blindness test.

Main findings. We empirically observed that the error rates in

depth order perception differ across the three different opacity

levels. Specifically, increasing the opacity in the front layers may

improve depth accuracy. In contrast, increasing opacity in the back

layer leads to lower accuracy, though this effect is not statistically

significant. We provide our analyses and results for the pilot study

in Appx. C.

Power analysis. We utilized power analysis to determine the ap-

propriate number of participants for our main experiment. Based

on an anticipated effect size of .76 and a power level of .8, we cal-

culated that a minimum of 15 participants would be required for

each combination (each image). The effect size was derived from

the pilot data, which showed an average accuracy of .79 in the task

with a standard deviation of .25, compared to an expected accuracy

of .6.

3.3 Main Experiment

Updates from the pilot study. We decided to further reduce the

number of trials for participants, as half an hour is considered long
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for crowdsourced participants [2]. The stimuli were randomly di-

vided into 9 groups, each comprising 112 trials. We also included

4 additional attention-check trials. The attention checks were pre-

sented with opaque colors, making it easy to discern the correct

depth order. Furthermore, to prevent participants from spending

excessive time on a single trial, we added a time limit based on the

maximum average time observed, which was 20 seconds per trial.

Other settings were identical to that of the pilot study: participants

clicked to select the disk that appears to be in front of the others.

Participants. Following our power analysis, we recruited 192 par-

ticipants via Prolific, exceeding the minimum requirement of 135

participants (9 groups × 15 participants). While there were no spe-

cific requirements for illumination, all participants were required

to use a display with a resolution of at least 1920×1080 pixels. To
ensure data quality, participation was restricted to U.S. residents

holding at least a bachelor’s degree. The demographic composition

of our participant pool included 82 males, 95 females, and 3 individ-

uals who preferred not to specify their gender. Ages ranged from

25 to 39 years, with 24 left-handed and 156 right-handed partici-

pants. Each participant was compensated $1.20 for their time as the

experiment took approximately 10 minutes.

Data. We included data from participants who correctly answered

at least three out of the four attention-check trials. For this reason,

we excluded 12 participants, resulting in a final count of 180 par-

ticipants. Each participant contributed 112 trials, adding to a total

of 20,160 trials (112 trials × 180 participants). Among them, 14,768

were answered correctly (73.25%), 4,862 were answered incorrectly

(24.12%), and in 530 trials, participants selected “uncertain” (2.63%).

4 Inferential Analyses and Results
We first conducted inferential analysis with the goal of drawing

inferences about the tested factors. Before initiating our analyses,

we formulated a set of hypotheses based on our experimental goals.

Subsequently, we conducted Null Hypothesis Significance Testing

(NHST) for each hypothesis. We focused on error rates, as com-

pletion time is not central to our interests. The error rate for each
combination (each image) is the rate of the number of incorrect

responses to the total number of responses from all participants.

Because our data is not normally distributed (see Appx. D) and has

variance heterogeneity, we opted for Kruskal-Wallis H test, a non-
parametric test. We also applied Bonferroni correction to count for

issues in multiple comparisons. Each corrected p-value is calculated

by multiplying the observed p-value by the number of comparisons

made, and we reported these corrected p-values below. To address
the limitations of NHST, we also reported depth order accuracy

alongside their bootstrapped confidence intervals [16, 47]. Without

loss of generality, we focused our analysis on the left disks. The left

and right positions are counterbalanced and symmetric (see Appx.

E), and prior research confirmed no positional bias [55].

4.1 Hypotheses
H1. There are significant differences in depth order percep-
tion across various color hues, measured by error rates. Prior
research suggests that cold colors in the front layer and warm colors

in the back layer can enhance the depth order perception [55].
4

However, this conclusion contradicts other studies that indicate

warm colors tend to appear closer [3, 53]. We hypothesize that

while color hue does impact depth order perception in both the

front and back layers, the effect may be less pronounced between

warm and cold colors.

H2. There are significant differences in depth order percep-
tion across various opacity levels, measured by error rates.
While a few studies suggest that opacity has a limited impact on

depth order perception [28, 29], others argue that increasing the

opacity of front objects improves the accuracy of depth order per-

ception [1, 55]. Based on our pilot study, we anticipate that varying

opacity would guide or bias participants’ depth order estimates,

depending on whether the opacity is applied to the front or back

layers.

H3. At each opacity level, there is no significant difference
in depth order perception across various color hues. Wang

et al.[55] discovered that cold colors consistently resulted in bet-

ter depth order perception, irrespective of opacity. We expect this

finding to extend to other color hues, not just cold colors. However,

we anticipate that the effect of opacity may vary depending on

whether the color hue is applied to the front or back layers.

H4. In each color hue, there are significant differences in
depth order perception across various opacity levels. Chan
et al.[10] observed that opacity perception varied with color. We

expect this finding to be applicable in our experiment as well, in-

dicating that the effect of opacity on depth order perception may

differ depending on the color hue.

4.2 The Effects of Color Hue
In Fig. 4a, we report the error rates in depth order perception across

various color hues, along with confidence intervals and p-values.

The Kruskal-Wallis H test indicates that the accuracy of depth
order perception is significantly dependent on color hues
(𝐻 = 20.51, 𝑝 = .0046). Additionally, •yellow results in signifi-

cantly smaller error rates compared to others (𝐻 = 11.44, 𝑝 = .0058).

We then break down the results by layer order. In either front

(𝐻 = 27.08, 𝑝 = .0003) or back (𝐻 = 44.26, 𝑝 < .0001) layers,

different color hues show significant differences. We observe that

both •pink (𝐻 = 22.7, 𝑝 < .0001) and •yellow (𝐻 = 12.51, 𝑝 =

.0032) in back layers perform significantly better, while •blue (𝐻 =

11.16, 𝑝 = .0067) in front layers also perform significantly better
than other color hues.

Additionally, •green, •blue, and •red exhibit smaller error
rates in the front layers compared to the back layers (Figs. 4b and c).
In contrast,•purple,•pink,•orange,•brown and•yellow, have

smaller error rates when they are in the back layers. However, only

•blue (𝐻 = 10.14, 𝑝 = .0012) and •pink (𝐻 = 25.28, 𝑝 < .0001)

show significant differences between the front and back layers.

Note that, •red, •orange, •yellow, and •blue share the same

saturation value (𝑆 = 100) and nearly identical lightness values

(𝐿 = {52, 51, 50, 50}), but they result in different error rates, which

4
We use the terms “warm” and “cold” colors as a naming convention for color clas-

sification. They shouldn’t be interpreted as an intention to hypothesize about color

temperature.
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Figure 4: The effects of color hue (Sec. 4.2). We report the mean, 95% confidence intervals, and NHST results. The first panel (a)
shows the overall effects of color hues aggregated across both front and back layers. After breaking down the results by (b)
front and (c) back disks, we find strong effects of color hue on depth order perception.
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Figure 5: The effects of different opacity levels (Sec. 4.3). We report the mean, 95% confidence intervals, and NHST results. The
first panel (a) shows the overall effects of opacity levels aggregated across both front and back layers. We then break down the
results for (b) front disks and (c) back layers.

likely showcases the dominant effect of color hue. Readers can

refer to our exploratory analysis in Sec. 6 for more details. In sum,

we observe significant differences in error rates across the eight

examined color hues, fully supporting H1.

4.3 The Effects of Opacity
In Fig. 5a, we report the error rates in depth order perception across

three different opacity levels, along with the means, confidence

intervals, and p-values. In general, opacity shows significant
differences (𝐻 = 81.11, 𝑝 < .0001), and we observe an overall neg-

ative correlation with the error rate. The error rate is significantly

smaller with high opacity (𝐻 = 71.22, 𝑝 < .0001), and larger with
low opacity (𝐻 = 48.21, 𝑝 < .0001).

We also break down the data by whether the disk is in the front

(Fig. 5b) or back layer (Fig. 5c). When the correct disk is in the

front, the error rate decreases as opacity increases: the error rate is

significantly smaller for high opacity (𝐻 = 188.41, 𝑝 < .0001) and

smaller for high opacity (𝐻 = 210.51, 𝑝 < .0001). In contrast, when

a disk is in the back, error rates increase as opacity increases: the

error rate for the back disk is significantly smaller for low opacity

(𝐻 = 14.96, 𝑝 = .0003) and larger for high opacity (𝐻 = 7.18,

𝑝 = .0022). In sum, we observe significant differences in depth

perception across various opacity levels, and depending on layer

ordering, this could be a positive or negative correlation. Therefore,

H2 is fully supported.

4.4 The Interaction Effects between Color and
Opacity

a. Opacity to the Effects of Color Hue

We first categorized the effects of color hues at each opacity level

(see Fig. 6a). In general, the impact of hue on depth perception di-

minishes as opacity increases, corresponding to smaller differences

in error rates for high opacity. However, we don’t observe any
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Figure 6: The interaction effects between opacity and hue (Sec. 4.4). We report mean, 95% confidence intervals, and NHST results.
(a) displays the overall error rates aggregated across both front and back layers for different color hues. (b)-(d) further break
down these error rates, distinguishing layer position at each of the three opacity levels.

significant differences across color hues at each examined opacity

level. As before, we broke down the data by front and back layers

to analyze how opacity influences the effect of colors in different

layers, and delved into each opacity level as follows:

At the low opacity level (𝛼 = 0.3; Fig. 6b), most color hues

exhibit high error rates when placed in the front layer and

low error rates when placed in the back. Color hues show

significantly different impacts on depth perception in both the

front (𝐻 = 28.71, 𝑝 = .0002) and back (𝐻 = 19.03, 𝑝 = .0081)

layers. The •pink color performs significantly better in the

back layer (𝐻 = 8.44, 𝑝 = .029) and worse in the front layer

(𝐻 = 11.29, 𝑝 = .0062) than other colors. Conversely, •blue in
the front layer performs significantly better than other color

hues (𝐻 = 12.26, 𝑝 = .0037).

Similarly, at the medium opacity level (𝛼 = 0.5; Fig. 6c), color

hues show significantly different error rates on both the front

(𝐻 = 32.76, 𝑝 < .0001) and back (𝐻 = 16.89, 𝑝 = .0018) layers.

Again, •pink in the back layer (𝐻 = 9.64, 𝑝 = .0015) and

•blue in the front layer (𝐻 = 14.3, 𝑝 = .0012) demonstrate

significantly smaller error rates compared to other colors.

At the high opacity level (𝛼 = 0.7; Fig. 6d), error rates are

generally reduced for the front layer and increased for the

back layer across all examined colors, and all these colors show

similar error rates.

In sum, the effect of color hues on depth order perception

depends on opacity levels, but this influence might be modulated

by the front and back positions, partially supporting H3.

b. Color Hue to the Effects of Opacity

We then explored how each color hue influences the perception of

depth order across the three opacity levels. We observe a significant

decrease in error rates with increased opacity, particularly for•pink
(𝐻 = 12.56, 𝑝 = .015), •yellow (𝐻 = 12.55, 𝑝 = .015), and •purple
(𝐻 = 12.58, 𝑝 = .015). However, this trend is not significant for

•red (𝐻 = 9.5, 𝑝 = .069), •blue (𝐻 = 8.81, 𝑝 > .098) and •green
(𝐻 = 7.29, 𝑝 > .21).

We compared across opacity in the upper row (front layers) of

Figs. 6b-d. We observed a significant reduction in error rates with

an increase in opacity across all tested color hues (𝑝 < .0001 for

all eight hues). Conversely, we compared across opacity in the

lower row (back layers) of Figs. 6b-d, and observed that higher

opacity might lead to higher error rates. However, this trend is

not statistically significant (𝑝 ≥ .87 for all eight hues). Overall, as
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the effect of opacity on depth order perception is only consistent

among color hues in the front layer, H4 is partially supported.

4.5 Summary and Discussion
Overall, our results show statistically significant impacts of both

color hue and opacity on depth order perception, with partial inter-

action effects between these two factors. Additional results detailing

different pairs and layers can be found in Appxs. F and G. Our find-

ings fully support H1 and H2, demonstrating that both color hue

and opacity play a role in depth order perception. We also find

that layer position is an important factor modulating the effects

of color and opacity; for example, the best-performing color hues

differ between the front and back layers. Compared to Wang et al.’s

work [55], we did not observe the trend of all cold colors in the

foreground and warm colors in the background enhancing depth

order perception. This can be attributed to the complex interac-

tions between color and opacity in semi-transparent visualizations,

where simple trends may not generalize across all conditions. Our

results partially support H3, suggesting that the effect of opacity

on color hue’s impact varies depending on whether the hue is ap-

plied to the front or back layers. Increasing front-layer opacity

significantly reduces error rates across all tested color hues, while

the trend of increasing back-layer opacity leading to higher error

rates is not statistically significant across color hues. Unlike the

cited above [55], which noted that back-layer opacity increases

error rates, our findings highlight the nuanced interaction between

opacity and color hue. Finally, our findings partially support H4,

indicating that while color hue does influence the effect of opacity,

this relationship depends on specific color hues and their layer

positions. These findings largely enrich those from previous work,

separately consider the impacts of hue and opacity for the front

and back layers, as well as their interaction effects.

5 Predictive Analyses and Results
The inferential analyses above reveal the overall impacts of color

and opacity on depth order perception. However, significance tests

alone do not fully address the practical needs of designers, who may

work with color choices beyond those tested in our study. To bridge

this gap, we opted formachine learningmodels trained on our exper-

imental data. These predictive models serve two key purposes: (1)

they interpolate between tested values, enabling designers to eval-

uate color and opacity combinations not directly included in the ex-

periment, which leads to our design aid tool; and (2) they allow us to

analyze the importance of a set of features, providing additional in-

sights into the nuances and relationships between design variables.

5.1 Methods

Data. Our models predict whether viewers can correctly identify

the disk in the front.
5
This prediction can be used in practice to

assess if viewers can correctly perceive the depth order in a visual-

ization. As introduced in Sec. 3.3, we had collected a total of 14,768

correctly answered trials and 4,862 incorrectly answered trials from

all participants. A label of 1 indicates that the participant correctly

5
We had attempted to predict error rates, but all the tested models (e.g., SVM, random

forest, lasso regression) performed no better than random guessing due to noisy data

or overfitting.

identified the front disk, while a label of 0 indicates they did not.

We randomly partitioned the collected trials into training sets (90%)

and test sets (10%), and used ten-fold cross-validation. The 2.63% of

trials with “uncertainty” answers were discarded.

Candidate features.We derived candidate features based on the

nuances of color hue and opacity between the front and back layers

to effectively capture how these properties change and interact

when the layers overlap. Specifically, we included the original hue

and opacity values of both layers as candidate features, along with

statistical measures such as minimum, maximum, and mean values

to summarize the variation in hue and opacity between the two

layers. Additionally, we calculated the color hue and opacity dis-

tance between the front and back layers. The hue distance refers to

the difference between two colors on the hue wheel, measured as

the arc-length distance [13]. In total, we derived 𝑑 = 12 candidate

features, represented as a feature vector 𝒇 = (𝑓 1, ..., 𝑓 𝑑 ),
𝑓 1 hue front: color hue assigned to the front layer,
𝑓 2 hue back: color hue assigned to the back layer,
𝑓 3 opacity front: opacity assigned to the front layer,
𝑓 4 opacity back: opacity assigned to the back layer,
𝑓 5 hue min: the smaller hue value between the two layers,
𝑓 6 hue max: the larger hue value between the two layers,
𝑓 7 hue mean: the average hue value between the two layers,
𝑓 8 hue distance: the hue distance between the two layers,
𝑓 9 opacity min: the smaller opacity between the two layers,
𝑓 10 opacity max: the higher opacity value between the two
layers,
𝑓 11 opacity mean: the average opacity value between the two
layers, and
𝑓 12 opacity distance: the opacity distance between the two
layers.

Candidate architectures. In selecting model architectures, we

aimed to balance the performance and interpretability, and thus in-

cluded logistic regression [15], decision tree [44], random forest [7],

and Support Vector Machine (SVM) with both linear and radial

basis function (RBF) kernels [11, 14, 30]. First, logistic regression,

despite its simplicity, has proven to be a reliable binary classifica-

tion method, particularly for predicting binary judgments in scat-

terplots among a set of deep neural networks [59]. Decision trees

offer straightforward and interpretable models by creating clear de-

cision rules [44]. Random forests further combine the predictions of

multiple decision trees with improving accuracy and robustness [7]

and were the best-performing ones in making constraint-based
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(a) accuracy of 12 features (b) F1 scores of 12 features 
best 
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Figure 7: The average performance of different models with
all 12 features. Error bars represent 95% confidence intervals.
Random forest and decision tree have the best performance.
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Figure 9: Sensitivity analysis. We gradually added a feature to each model by their importance and assessed the changes in
performance. Again, we report mean values and 95% confidence intervals here.

visualization recommendations [30]. Finally, SVMs were used to

generate optimal color blending results [31], while RBF is the most

widely used kernel.

Metrics.We focused on accuracy and F1 score to assess our models.

Accuracy provides an intuitive understanding of overall model

performance, while the F1 score offers insights into the balance

between precision and recall, especially in situations where our data

exhibits class imbalances. We also calculated other common metrics

like precision and recall and provided the results in Appx. H.

5.2 Results

Performance.We report the mean accuracy and F1 scores, along

with their 95% confidence intervals in Figs. 7a-b. Overall, the deci-

sion tree and random forest models achieve the best performance

among those tested. Between them, random forest models result

in slightly higher prediction accuracy and F1 score compared to

decision tree. On the other hand, SVM with a linear kernel and

logistic regression perform relatively poorly, but are still close to

SVM with an RBF kernel.

Feature importance.We also calculated feature importance for

each model, and reported the results in Fig. 8. For logistic regres-

sion and SVM with a linear kernel, the coefficients were directly

extracted from the linear models. For the nonlinear models of deci-

sion tree, random forest, and SVMwith an RBF kernel, we employed

the permutation importance scheme [7] to assess feature impor-

tance. This method measures the model’s performance changes

when feature values are randomly reshuffled. Across all tested mod-

els, except SVM with a linear kernel, the top feature is opacity

front, the opacity of the front layer. In logistic regression, all of

the top five most important features are related to opacity. The top

features include those related to hue in other models.

Sensitivity analysis. We also conducted a sensitivity analysis.

Specifically, we selected the top n (𝑛 ≤ 12) candidate features

and retrained the models. We reported the accuracy and F1 score,

along with 95% confidence intervals, as a function of the number

of top features in Fig. 9. While most of them showed increasing

accuracy as more features were added, the SVM with linear kernels

exhibited no performance improvement beyond the top feature,

hue mean. Additionally, the decision tree and random forest models
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Figure 10: Interface of our small design aid tool. Appx. I
provides a demonstration.

achieved the highest accuracy with the top features, and features

like hue max (the larger hue between two layers), opacity max (the
larger opacity between two layers), and opacity distance (the opacity
distance between two layers) were redundant.

Best-performing model. The random forest with four features

(opacity front, hue front, hue back, opacity back) is considered

the best-performing model, as it consistently yielded the highest

average accuracy and F1 score. These features suggest a balance of

color hue and opacity in both the front and back layers.

Design Tool. Since these predictive models yield satisfying accu-

racy, we applied them in a small tool that can aid in the design

of semi-transparent visualizations. In this small tool, a user can

input the color, opacity, and layer positions of two overlapping ele-

ments in the interface, and it will automatically output whether
viewers can correctly perceive the depth order with a proba-

bility score (see Fig. 10). The design tool, our code, and models are

available at https://osf.io/n3jg8, including detailed instructions for

downloading and running the tool on a local computer.

6 Exploratory Analyses
As reported in previous work [26, 55], lightness and saturation

may influence depth perception. As a robustness check, we repli-
cated our inferential and predictive analyses for the lightness and

saturation of the eight colors used in the experiment. As these anal-

yses were conducted post hoc, we consider them exploratory. We

summarize the findings below and report details in Appxs. J and K.

Lightness. The Kruskal-Wallis H test on lightness results in a

significant difference (𝐻 = 17.26, 𝑝 = 0.0084) for both front (𝐻 =

25.23, 𝑝 = .0003) and back (𝐻 = 28.90, 𝑝 < .0001) layers. As

lightness varies hue in the tested colors, we then used predictive

analysis to separate the effect of lightness from opacity and hue.

We used the original candidate feature vector 𝑓 augmented with

six additional lightness features, and calculated feature importance

across the five models. Across all models, opacity- and hue-related

features consistently ranked highest. Hue-related features dominate

the top five ranks, except in the logistic regression models. Also,

adding lightness features minimally improved model accuracy (on

average less than 0.16%). In sum, lightness has minimal influence

compared to opacity and hue, validating our results and conclusions

in Secs. 4 and 5.

Saturation. The Kruskal-Wallis H tests show no significant differ-

ences in depth order perception across different saturation values

(𝐻 = 1.39, 𝑝 = 0.5), with consistent results observed for both the

front (𝐻 = 5.22, 𝑝 = 0.074) and back (𝐻 = 5.08, 𝑝 = 0.079) layers.

Again, opacity- and hue-related features consistently ranked high-

est, and no saturation features appeared in the top five across all

the tested models. Furthermore, adding saturation features also

minimally improved model accuracy (on average about 0.2%). In

sum, saturation also has minimal influence.

7 General Discussion
7.1 Design Guidelines
The selection of colors and opacity, as well as their combinations,

are composed of a large design space. A casual design might result

in incorrect depth order perception. Based on our inferential and

predictive analyses, we provide four design guidelines for color

selection in semi-transparent visualizations as follows:

Color hue significantly affects the perception of depth layers.

Among the most commonly named colors, we found that•pink
and •yellow perform superior in depth order perception com-

pared to other colors in the back layer. However, in the front

layer •blue performs better than other colors. Furthermore,

increasing the hue distance between the front and back layers

has a positive effect on depth order perception, according to

the best-performing model. Therefore, GL1 •blue and •pink
(or •yellow) can be considered a priority in selecting
colors for depth order perception tasks in the front and
back layers, respectively.

More broadly, warm hues (e.g., •••••) and cold hues (e.g.,

•••) have different impacts on depth order perception. Specif-

ically, disks with •green, •blue, and •red have smaller er-
ror rates when positioned in the front layer as opposed to

the back layer. Conversely, when disks containing •purple,
•pink, •orange, •brown, and •yellow are in the back layer

as opposed to the front layer, they exhibit smaller error rates.
Previous suggestions byWang et al. [55] and others have posed

that cold colors should be in front and warm colors should be

in the back. Although •red and •purple present exceptions
to this pattern, in most cases, our findings support the idea

that warm and cold colors can be used as a reference for depth

order perception. As such, GL2 cold colors can be used for
the front layer and warm colors for the back layer, except
•red and •purple.
Opacity significantly influences depth perception, and the im-

pact of opacity on depth order perception remains consistent

across varying color hues. However, the effect of opacity is

conditional on the layer positions, whether in the back or the

front layer. For disks in the back layer, higher opacity levels are

associated with increased errors in depth perception. In con-

trast, for disks in the front layer, lower opacity levels can lead

to greater errors. The importance of opacity in both the front

and back layers is also evident in our predictive analyses, with

https://osf.io/n3jg8
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Figure 11: Applying our design guidelines to the Scan Bio dataset [49]. (a) and (b) violate GL1 to put •pink in front layers and
•blue in back layers, resulting in ambiguity in order perception regardless of opacity. When we follow GL1 and GL2 to put
•blue and cold colors in front layers, and use GL3 to adjust opacity, the depth order is easy to perceive in (c).

the opacity of the front layer showing a stronger effect. As such,

we recommend that GL3 front layers should be assigned to
higher opacity, while back layers should be assigned to
lower opacity. However, as opacity levels further increase or

decrease, both depth perception and overlapping area identi-

fication tasks become more difficult outside our tested range

(e.g., opacity > 0.7). Careful calibration of these opacity levels

is essential to achieve a balance that optimizes both occlusion

effects and depth order perception.

The effect of opacity on depth perception varies with color hues,

in alignment with the suggestions of [10]. As opacity increases,

the error rates decrease for colors like •pink, •yellow, and

•purple. But this trend is not significant for other colors like

•red, •blue and •green. Therefore, GL4 in applications
that require frequently adjusting opacity levels—such
as medical imaging for exploring different organ struc-
tures—using colors like •red, •blue and •green can be
more effective. These colors (•••) tend to produce fewer

errors compared to others when opacity is frequently changed.

Additionally, the influence of color hue on depth perception

has a diminishing trend as opacity increases, but the effect is not

significant. Although we observed that the cold color •blue per-
forms better in the front layer than other colors in both low and

medium opacity levels, we cannot derive that cold colors consis-

tently result in better depth order perception regardless of opacity

as Wang et al. [55] suggested, due to the interaction effects between

color and opacity.

We demonstrate the practical application of our design guidelines

using a case of parallel coordinates with three overlapping clusters.

We show two negative examples in Figs. 11a and b, where the

front clusters are assigned •pink to front layers and •blue to back

layers. Regardless of whether the opacity level is higher or lower,

it is difficult to perceive the correct depth order. Let’s first follow

GL1 and assign •blue to the front layer; we then follow GL3 and

decrease the opacity from the front to the back. As a result, it is

much easier to perceive the correct depth order and identify the

clusters in Fig. 11c. These examples demonstrate the generalizability

of our guidelines to situations involving various shapes and more

complex color overlaps, even though our experiment only involves

two overlapping disks.

7.2 Limitations & Future Work
Our experiment represents the most comprehensive effort to date

in evaluating the impacts of color hue and opacity on depth order

perception, yet we had to simplify our experiment to a manageable

scope.

First, our study opted to use 𝛼-blending, to ensure the relevance

and applicability of our findings to a broader audience. Future stud-

ies could expand on our findings by alternative methods [12, 55] to

address specific depth perception challenges. Due to color blending,

background colors may alter the appearance of foreground colors,

leading to different depth layer perceptions (see Appx. L). We also

hope our results will inspire the development of color blending op-

erators [12, 31] that better account for the perceptual interactions

between color and opacity.

Second, other visual elements, such as color saturation [10], color

lightness [19], shape [32], size [50], x-junctions, boundaries, and tex-

ture [34, 42], could also influence depth perception. Our study pro-

vides a foundation for future studies to incorporate these additional

factors. Similarly, we opted for simpler and interpretable predictive

models based on prior works, while future work could explore the

nuances in accuracy and F1 score for different architectures.

Third, our experiment used a controlled setup with two overlap-

ping disks and generated interpretable results that provide useful in-

sights for future work. More complex, multi-layered scenarios could

be included in future studies to improve the realistic visual experi-

ences and investigate the wider applicability of our discoveries. On

the other hand, our chosen colors primarily reflect how humans cat-

egorize colors in practical visualization applications, but were not

controlled for lightness and saturation. Although our exploratory
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analyses show minimal impacts of lightness and saturation, follow-

up studies with controlled lightness and saturation could support

fine-grained adjustments of color hue and opacity values.

Finally, we mainly focus on understanding the effect of color

and opacity on depth perception, a foundation for many tasks in

semi-transparent visualizations. There are other meaningful tasks

in semi-transparent visualization, such as identifying overlapping

areas across different categories and structures. Further research

could explore these different tasks to expand the applicability of

our findings to a broader range of domain applications.

8 Conclusion
Our goal was to investigate the impact of color hue and opacity

on depth perception in semi-transparent visualizations. To achieve

this, we conducted an online experiment, testing semi-transparent

visualizations consisting of two disks that varied across eight color

hues, three opacity levels, two layer orders, and two arrangements.

We analyzed the experimental data using inferential analysis, which

highlighted the significant influence of opacity and other factors on

depth perception. Additionally, we performed predictive analyses

with 12 candidate features to evaluate their impact on depth order

and develop predictive depth models that can be easily applied in

practical scenarios. In this analysis, both decision tree and random

forest achieved comparable results, with the best average accuracy

of 80.72% and F1 score of 87.75% on the tested color hue and opac-

ity features. Based on both inferential and predictive analyses, we

provided a small design tool and derived four design guidelines

for semi-transparent visualizations. We hope our work can inspire

and encourage further research in the field of semi-transparent

visualizations.
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